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Abstract. The problem of the effect of a mobile load on a soil layer of finite thickness 

lying on a horizontal elastic foundation is considered. 

The soil is modeled by an ideal nonlinearly compressible and irreversible unloading 

medium, in which the relationship between pressure and volumetric deformation under loading 

and during unloading of the medium is linear and irreversible. 

The load is applied to the upper surface of the layer and moves at a superseismic speed. 

The problem of the effect of a moving load on a two-layer medium consisting of a soft soil layer 

and an elastic-yielding pad with different thicknesses and densities is considered. The solution to 

the problem is constructed analytically in both reverse and direct ways. 

          A two-layer medium consists of a soft soil layer of thickness h with an elastic deformable 

base. The soil is modeled by an inelastic ideal medium with linear compressibility and linear 

irreversible unloading. Consequently, the shear resistance of the medium is neglected. According 
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to this statement, the influence of the deformability of the base and the load profile on the 

distribution of the dynamic parameters of the layer and the contact surface was investigated. 

          Keywords. Mathematical models, propagation of a plastic wave, half-space, analytical 

solution, wave front, ideal fluid, linear compressibility, irreversible unloading. equation of 

motion, continuity, states of the environment 

Formulation of the problem. Let us consider the problem of the propagation of a plastic 

wave in a two-layer medium with a plane-parallel interface under the action of an intense load of 

a falling profile moving along its upper boundary with a constant super seismic velocity D. 

A two-layer medium consists of a soft soil layer of thickness h with an elastic deformable 

base. The soil is modeled by an inelastic ideal medium with linear compressibility and linear 

irreversible unloading. Consequently, the shear resistance of the medium is neglected. 

According to this statement, the influence of the deformability of the base and the load 

profile on the distribution of the dynamic parameters of the layer and the contact surface was 

investigated. The results of the numerical calculation are compared with the results of the 

acoustic layer and the layer with a rigid base. The solution of the problem is constructed in 

series, and their convergence is proved. 

Let a monotonically decreasing normal load move along the upper boundary of the layer 

with an elastic base with a speed D exceeding the speed of wave propagation. The layer material 

has such a property that, under loading and unloading, the relationship between pressure P  and 

volumetric deformation   is linear and irreversible, the slope 2Е  of the unloading branch of the 

P   diagram exceeds the slope 1Е  of the loading branch, i.e. 1 2Е Е . 

Under the action of the above load, a compression wave 1 , first propagates in the layer, 

which is reached by the contact line of the media, induces a reflected plastic wave 2 , in the 

layer, and in the second medium a system of elastic (longitudinal and transverse) waves a  and 

b . At 1 2E E  he speed of propagation of the AD  characteristic is greater than the speed of 

the front 2 , therefore, as in the previous section, regions 2, 3, 4, etc. appear. On the a  and 

b  system, the layer material is instantly loaded, and then in areas 1, 2, 3, the medium is 

unloaded. Taking into account that the solution of the problem in domains 1 and 2 was obtained 

in the previous section, below we propose a solution to the problem only in domains 3 of layers 

and ,a b  of the elastic half-plane. For the joint problem of the domain 3, ,a b  (5.1.7) holds and 

the equations for the displacement potentials  ,   the elastic half-plane 
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and according to the d'Alembert formula, their solutions are represented in the form 
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where 
02 , , G  − initial density and Lame coefficients of an elastic medium. 

The boundary conditions for this problem are as follows: 
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( )* * * *

3 2 3 2tg u u  − = − ,                                                     (3) 

on contact AE of two media at  ,
h

h
tg

 


=   

2 2

2
0, ,D P 


 

   

     
= + = = − 

    
.               (4) 

Here, ,   − stress components in an elastic medium. To find the function ( )4f t  

from (3) and (4), taking into account (2), we obtain the functional equation 
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The solution to equation (5) is constructed by the method of successive approximations. 

Indeed, taking as the zero approximation  

( ) ( )1
40 1

0

f G


 


 = − . 



4 

 

for the first approximation we have 
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Then, continuing the iteration process, we obtain a recurrent formula of the form 
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Research has shown that 1 01, 1    and ( )1G   are monotonically decreasing 

functions. 

Consequently, according to the d'Alembert criterion, series (6) converges absolutely, and 

one can set the radius of its convergence. Then the solution of the problem taking into account 

(6) takes the form 
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In this case, the normal stress   of the elastic half-plane in the regions a  and b  is 

determined by the formulas 
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If , ,G → →  then 1 0 = − , and from (7), (8) for the case of a layer with an 
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In the future, based on formula (7)-(12), it is necessary to carry out some calculations on a 

PC and analyze them. 

Note that the above technique allows us to solve the problem of the effect of a moving load 

on a nonlinearly compressible strip lying on an elastic half-space. 

Conclusion. The problem of propagation, reflection and a two-dimensional stationary 

plastic wave in a two-layer medium with densities 1 2,   is investigated for the case when the 

state diagram ( )P P =  of the first medium (soil) is shock and under loading has the form 

2

1 2( )P     = + , and the second medium (black rock of a rock or pad) - elastic or rigid plastic. 

The problem is solved analytically by both direct and inverse methods, taking into account wave 

processes in the second medium and without taking them into account. Analysis of the results 

obtained on the PC shows that at 1 2   taking into account the elastic - plastic properties of 

the second medium (spacer), modeled by a half-space, leads mainly to a decrease in the 

maximum values of stresses (pressure) at the contact of two media. At 1 2  a stress 

concentration appears on the contact surface, and the pressure acquires the highest value in the 

case of an acoustic layer lying on a rigid foundation. The qualitative and quantitative picture of 

changes in the values of pressure and kinematic parameters depends not only on the stiffness 

characteristics of the media, but also on the ratio of their densities. 

           Thus, the above studies on the study of the two-dimensional stress-strain state of a 

homogeneous, inhomogeneous and layered medium under intense action of a mobile load on the 

boundary of a multilayer half-space confirm the need and importance of taking into account 

nonlinear, irreversible, wave processes. 
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