An extensive review describes the unique properties of apatite, which, due to the peculiarities of its structure, allows for diverse isomorphic substitutions both in its cationic part (Mn, Sr, Ba, REE, U, etc.) and in the anionic part (CO 2, SO3, SiO 2, OH, F, Cl, etc.). Since these substitutions occur under well-defined conditions in both endogenous thermal and exogenous low-temperature processes, the composition of apatite turns out to be an indicator of these processes. At the same time, the conditions of formation of most igneous and metamorphic rocks can be judged by the composition of accessory apatite, and the genesis of phosphorus ores, both endogenous (Khibiny, Kiruna type, etc.) and exogenous (phosphorites), is judged by the composition of ore-forming apatite. The review is based on the recent "Irish" review 2020, covering 147 literary sources and compiled by 4 co-authors from Dublin and one from Stockholm [130]. Since the compilers of the "Irish" review practically did not use literature in Russian, it became necessary to seriously supplement it with the data given in the domestic literature, as well with a number of foreign works that are not covered by the "Irish" review. The resulting text should make it much easier for the geologist reader to use apatite in practice as a remarkable mineral-an indicator of various geological processes
apatite, carbonate-apatite (francolite), halogens, sulfate, trace elements, REE, manganese, strontium, neodymium, uranium
In 2012, Ukrainian authors [18] assessed the feasibility of using REE in apatites of endogenous deposits of the Ukrainian Shield as an indicator mineral of ore formation conditions. Apatite from arrays of gabbro-syenite and alkaline-ultramafic formations of the Ukrainian Shield, as well as from P-Fe-Ti deposits within anorthosite-rapakivi granite plutons, apatite-bearing metagabbroids and calcifyres were analyzed. It is shown that apatite from deposits of different formation affiliation differs significantly in the concentration of impurity elements and the form of chondrite-normalized REE spectra. According to the authors [18], the values of Sr, REE, Y concentration, values (La/Yb)N and Eu/Eu* in apatite obtained by them can be used to diagnose the formation affiliation of apatite-bearing rocks, the type of their mineralization and conditions of mineral formation. The interpretation of the processes of magmatic-hydrothermal ore formation is particularly controversial, as can be seen from the works of Ural geologists who studied the morphology and composition of accessory apatite in the granitoids of the Urals with quartz-vein gold mineralization [69]. The genetic concept proposed by them is striking in its complexity: according to the features of apatite, the authors try to judge the facies of the depth of granitoids, the P-T conditions of their crystallization, the compositions of magmas and their fluid regime! In particular, they studied in detail gabbro-tonalite-granodiorite-granite massifs (GTGG) of gold-metallogenic profile, as part of the granitoids of the plutonic group, which are suprasubduction formations of the active continental margin. The formation of such massifs began with water-based mantle magmatism, the products of which (gabbroids) in the conditions of the lower crust (at pressures of 6–8 kbar) were then subjected to partial melting (water anatexis) giving rise to the earliest members of the magmatic series – gabbro-tonalite-granodiorites, which are mantle by substrate, and anatectic by the mechanism of formation. And then the crustal anatexis of the rocks of these early series followed – with the formation of later adamellite-granite rocks, with which the golden and gold-sheelite mineralization is associated in the Urals (Berezovseoe, Kochkarskoye, etc. deposits). During the evolution of this very long (60–80 million years) crustal water anatexis, there was a multiple redistribution of gold from melts and crystallizing rocks into a weakly chlorine-bearing ore-forming fluid enriched with sulfur and carbon dioxide. Therefore, in pre-ore apatites, the chlorine content is 0.1–0.2%, and in apatites from ores, the fluorine content increases greatly with a decrease in chlorine to zero values. The second important sign of apatites from ores and ore-bearing metasomatites –berezites) is a sharp increase in in their sulphate sulfur content to 1% by weight. 5.1. Platinum-metal deposits In 2018, the outstanding Moscow mineralogist Ernst Spiridonov, in collaboration with A. A. Serova, presented a detailed picture of the formation of Norilsk sulfide ores with PGE – based on the study of the composition of accessory apatites of three generations [60]. The authors assumed that apatite concentrates F and Cl, which play an important role in the formation of pneumatolite minerals of platinum group elements. Apatite I, whose composition evolved from hydroxychlorapatite to chlorapatite, is common among the sulfide bodies of massive Norilsk ores and in the fringes of fluid action over sulfide droplets in interspersed ores. Apatite I is associated with Ti biotite, titanomagnetite, ilmenite with baddeleyite lamellae, anhydrite, low-titanium kersutite, chlorine-containing hastingsite and edenite, jerfisherite and bartonite, EPG and gold minerals. Apatite I contains up to 2.3 wt.% lanthanides, mainly Ce, La, Nd. Apatite I increases and replaces it with apatite II, the composition of which has evolved from hydroxychlorofluorapatite to fluorapatite. Apatite II also composes numerous isolated crystals in the mass of sulfides. The lanthanide content in apatite II is up to 0.9 wt.%. Pneumatolite chlorapatite and fluorapatite contain ~0.5% SiO2. The composition of apatite testifies to the discrete evolution of fluids released during the crystallization of Norilsk sulfide melts: at the first stage from water-chloride to chloride, in the second stage from water-chloride-fluoride to substantially fluoride. Lanthanides released during the replacement of chlorapatite I with fluorapatite II were probably part of the pneumatolite zonal orthite-(Ce). In the areas of late metamorphism in the prenite-pumpellite facies among metamorphosed sulfide ores, apatite I and apatite II are partially or completely replaced by apatite III, whose composition varies from hydroxychlorapatite to hydroxyapatite, and which is poor in fluorine and lanthanides. Lanthanides released during the substitution of apatite I and II with metamorphogenic hydroxyapatite III are probably fixed in metamorphogenic nonzonal orthite-(Ce). In 2015, Voronezh geologists, using the chlorine content in excessory apatites from the section of the stratified Kivakka intrusion in north Karelia, proposed a new criterion for searching for zones of platinum-metal mineralization, to which they gave the name "Kivakka Reef type" [3]. They claim that the identification of the stratigraphic level with the maximum chlorine content, as well as the most significant range of changes in the chloricity of apatite, may correspond to the level of development of the Kivakka Reef mineralization zones containing Cu-Ni and EPG, especially Pd and Pt. The proportion of sulfide mineralization in rocks, distributed very heterogeneously, varies from the first% to 10%; on average, within the exposed part of the vertical section, about 3-5 vol.%. Sulfide minerals are represented by an association of pyrrhotite, chalcopyrite, pentlandite, with local development of bornite, secondary and rare pyrite, sphalerite, galenite, AuAg alloy, secondary violarite and chalcosine. EPG minerals are represented by members of the merenskite-moncheite (PdTe2–PtTe2), kotulskite (PdTe) and sperrilite (PtAs2) series. The ore zone is characterized not only by the maximum concentrations of Cl in apatite (> 6 wt.%), but also by the most significant range of detected variations. Along the section of this intrusion, significant variations in the composition of the rock-forming plagioclase and accessory apatite are also observed. 5.2. Kiruna type deposits As noted in the article by Buryat geologists [51], not so many apatite-magnetite deposits are known in nature. Some of them belong to the apatite-containing titanomagnetite type associated with gabbroids (for example, Volkovskoye in the Urals). The other part, described under the name nelsonites, contains increased amounts of silicate minerals and is a product of differentiation of alkaline rocks. The third group represents the Kiruna type. In addition to Sweden (Kirunavara, Luosavara, Grangesberg, etc.), such deposits have been established in China (Meishan), Iran (Bafc, Esford), South America (El Laco) and Chile. For the ore regions of Russia, this type of deposits was previously considered not characteristic. Only later the Markakul and Kholzun manifestations of Altai were attributed to this type. Apatite-magnetite deposits of the Kiruna type are usually large objects in terms of reserves. The specific features of such deposits, in addition to the presence of apatite in the ores, are increased concentrations of REE, sharp contacts with host rocks and insignificant scale of near-ore changes. So, Kiruna-type ore deposits are characterized by a sulfide-poor mineral association of low-titanium magnetite, fluorapatite and actinolite, and varies from giants with hundreds of millions of tons of high-grade ore to small vein and veined manifestations. Both tend to riftogenic structures – either marginal (back-arc) or intracontinental (anorogenic). Facially, the deposits are confined either to deposits of shallow-sea basins or to subaerial ones and are accompanied by manifestations of volcanic-plutonic activity and the strongest fluid influences expressed in albitization. The genesis of these deposits is fiercely debated, and the proposed mechanisms vary from magmatic (liquation) to exhalative-synsedimentation and to epigenetic hydrothermal. However, in recent years, the concept has prevailed that Kiruna-type deposits are the final member of an extensive group of Fe-oxide-Cu-Au deposits designated as IOCG. This idea is supported by the similarity of tectonic settings, the abundance of early magnetite, the presence in massive magnetite ores of small amounts of late pyrite and chalcopyrite ± Au ± REE and some common secondary and vein minerals, especially actinolite and apatite. It was proved that evaporites participated in the formation of ores – they served as a source of chlorine and sodium, which caused typical albitization for ores, and a high degree of oxidation of ores due to large-scale circulation of basin brines, enhanced by intrusive magmatism. Apatite-magnetite ores of the Kiruna type are described in the Ningwu volcanic basin in eastern China – in the Meishan deposit [137]. Here, massive and brecciated ores are isolated in the main ore body located at the contact between gabbro-diorite porphyry and biotite-pyroxene andesites, as well as subeconomic stockwork and scattered ores. There are 4 stages of mineralization, the features of which can be judged by the composition of apatite. At the first stage (in massive magnetite ore) apatite associates with magnetite, andradite and quartz, and at the second (in scattered magnetite ore) – with magnetite and siderite. Accessory apatites in modified gabbro-diorite porphyry have a mixed OH-Cl-F anionic composition, whereas apatites from ores are much more polarized – up to the terminal members, F- and OH-varieties. Low Mn contents in apatites are characteristic - usually less than 0.17%, which indicates a high oxidative potential of the hydrothermal fluid. This is consistent with the universally observed negative Eu anomaly in ore apatites enriched with light REE – and the absence of such in igneous apatites. As usual, such an anomaly of europium in ore apatite is explained by the extraction of Eu2+ by earlier magmatic plagioclase. In general, all the features of ore apatite confirm the genetic relationship of mineralization with altered gabbro-diorite porphyries. In an older Chinese article with the same first author [136], almost the same ideas are presented, but as it was popular in those years, the main emphasis in the genetic interpretation of Kiruna-type ores is on the mechanism of liquid immiscibility. Figures were given here: early igneous apatites contain 3031–12080 ppm REE, whereas late hydrothermal ones contain only 1958 ppm REE. This means that the late ore-bearing fluids were depleted of REE compared to magmas. As noted in the article of the Iranian-German collective [132], the Bafq ore province is located in Central Iran, where magnetite-apatite deposits of the Kiruna type with iron ore reserves (million tons) are located within the Cambrian volcanic-plutonic arc: Choghart (216), Chador-Malu (400), Se-Chahun (140) and Esfordi (17). In the latter, apatite reserves amount to 17 million tons (with 14% P2O5 and 17.2% Fe), and the REE content in certain areas of the deposit enriched with apatite reaches 2% by weight. Apatite here is low-calcium fluorapatite with a small admixture of hydroxyl and REE. The relic mineral has undergone a strong change with the removal of Na, Cl and REE. The extracted REE were mobilized and became part of the secondary monazite (by which the age of mineralization was determined), and also in a small proportion into allanite and xenotime, which either form independent crystals or are present as inclusions in apatite. The time has passed when Kiruna-type ores were unknown in Russia, and in 2017, and according to a number of signs, ores of the North Gurvunursky metrogenition (Western Transbaikalia) were also attributed to this type. According to the description of Buryat geologists [51]. pink apatite (color from finely sprayed hematite, up to 0.5-1 wt. % FeO), composes idiomorphic grains and prismatic crystals in ores, less often their segregation. The size of the crystals is usually 0.5-1 cm along the long axis. The mineral is distributed unevenly, usually in the amount of 1-3%, sometimes up to 10% of the ore volume. Part of the grains of apatite is crushed and cemented with fine-grained magnetite. The mineral belongs to fluorapatite (2.7-4.2 wt. %F), sulfur and chlorine are not characteristic of it. In apatite, there is an emulsion impregnation, and in some cases, larger monazite secretions and less often xenotima. The composition of impurities in the mineral contains strontium, yttrium (500–900 ppm), thorium, uranium, and the REE content reaches 1–1.5 wt. %, with a predominance of LREE. Within the areas with the release of emulsion inclusions of monazite, apatite is sharply depleted of REE, often less than 0.1 wt. %. In the "spectrum" of REE, the europium minimum is clearly expressed. The value of Eu/Eu* varies between 0.2–0.4, the REE differentiation index (La/Yb)N is low and ranges from 1.75–3.63 (average 2.58). Sometimes small grains of apatite are found in hydrothermal veins. This apatite-2 is devoid of impurity elements, including REE. Altai geologists [14], who studied Kiruna-type deposits in the western part of the Central Asian folded belt on the territory of Russia, Kazakhstan and North China, noted that at the early stage of ore formation, there was a noticeable selection and enrichment of the entire REE group in the earliest generations due to the sharp depletion of REE fluids, which were significantly consumed during the crystallization of rare earth minerals proper (orthite, monazite, xenotim, cerium epidote) [14, p. 77]: "This is clearly visible in the early and late generation of apatite. In the second generation of apatite, the concentrations of all REE are noticeably lower. In parallel, there is a decrease in the ratio of light to medium and light to heavy rare earths. The Eu/Eu* ratio in the second generation of apatite also decreases by almost an order of magnitude compared to the first". 5.3. Gold deposits In order to clarify the genetic relationship of the Berezovsky gold deposit with the granites of the Shartash massif, Ural geologists in 2011 studied the composition of the volatile phase (F, Cl, S) of apatite from the granites of the Shartash massif, from the dikes of the granite porphyry of both the massif itself and the Berezovsky gold deposit, as well as from the berezites formed by these dikes – in polished sections according to the samples of S. V. Pribilkin [33]. On the graph constructed by the authors in coordinates P2O5, % (from 40.5 to 43%) by abscissa and SO3,% (from 0 to 1.20%) by ordinate, the field of inverse correlation in apatites from granite porphyry and berezite dikes (where SO3% is greater than 0.40%) is quite clearly distinguished, and in the lower part of the graph (where SO3% is less than 0.40%) there is an uncorrelated field for apatites from granite of the Shartash massif. The authors concluded [33, p. 135]: "The data obtained indicate an increase in the sulfur content in apatites, in the process of formation of the Shartash massif – from granites of the main phase to vein series completing its formation, reaching the highest values in apatites of dykes of blue-ore granite porphyries of the Berezovsky formation and in apatites of berezites according to them <...>." Thus, in apatites from medium-grained granites of the Shartash massif, the SO3 content is 0.15–0.26%, in blue-ore granite porphyries 0.26–1.08% and in metasomatites (berezites) according to them – 0.44-1.05%. Unfortunately, the Bengge polymetal gold deposit in syenites in the South of China is known to us only from the meager English abstract of the Chinese article of 2019 [139]. As can be judged by the extremely general, non-specific data of this abstract, the content of impurity elements in apatites can be used for genetic purposes. In particular, as the intensity of gold mineralization in apatites increases, the contents of Mn and Ga decrease and the contents of Cl and SO3 increase. The data on regular variations in the composition of accessory apatite in rocks and ores of the giant Precambrian Olympic Dam deposit in South Australia, where Fe-Si-Au ores form a hydrothermal halo around the Roxby Downs granite reef massif (RDG), about 1.6 billion years old, are very indicative [110]. Based on the data on the composition of zonal apatite, the authors evaluate the indicator possibilities of the morphology and composition of REE in apatite for judging the evolution of the ore-forming fluid - from early to late hydrothermal stages. Zonal magmatic apatite usually has REE-poor cores and REE-enriched grain edges. The nuclei are enriched with light REE (LREE) normalized by chondrite, with a strong negative Eu anomaly. In hydrothermal ores, igneous apatite-1 disappears, replaced by hematite and sericite, and a newly formed apatite-2 is formed, in which the "spectrum" of REE normalized by chondrite has a convex shape due to the relative accumulation of medium REE (MREE), with a weak negative anomaly of Eu. The grains of such apatite-2 contain abundant inclusions of florencite and sericite. In the high-grade bornite ores of the apatite deposit, an even higher concentration of MREE with a positive Eu anomaly is demonstrated. The latter is explained by alkaline fluid conditions. The U and Th contents in apatite generally repeat the REE distribution – they are highest in igneous apatite of granitoids and consistently decrease in hydrothermal apatites. 5.4. Other deposits In 2018, Yekaterinburg geologists examined the distribution of mineralizing elements F, Cl, S in coexisting apatites, hornblende and biotites of diorites and granodiorites composing the main part of the East Verkhotursky massif, and in diorites of dikes cutting them [37]. It was shown that the S and Cl ratios in these apatites are closest to the compositions of apatites of suprasubduction diorite-granodiorite-porphyry complexes accompanied by gold-copper-porphyry and copper-molybdenum-porphyry mineralization. The authors cautiously suggested that the reduced content of sulphate sulfur in apatites from diorite dikes dissecting intrusive rocks may indicate a decrease in the oxidative potential at the final stage of the formation of the East Verkhotursky massif, which eventually led to the imposition of mineralization in the form of native copper. A new diagnostic triangle "F-Cl-S in apatites" has been proposed, which which may be useful for a preliminary assessment of the ore prospects of magmatic complexes of different composition. Yekaterinburg geologists [13] studied apatites from rocks containing (Mo)-Cu-porphyry deposits of the Urals. The average S content in apatite crystals from minimally modified dioritoids is 0.05-0.08 wt. %. Apatite from sericitized-propylitized granitoids of quartz-diorite composition of the two largest (Mo)-Cu-porphyry deposits of the Urals (Gumeshevsky and Mikheevsky) is also not rich in sulfur - usually 0.01–.03 wt. %. Thus, the amount of S in apatite of quartz-diorite magmatites does not depend on the scale of deposits, the nature of metasomatic changes in granitoids and the content of pyrite with a small amount of it (up to 1–3 wt. %). Slightly increased S contents are observed in all apatite crystals from everywhere propylitized and epidotized rocks of the extensive Sapov subvolcanic structure. Apatite from dolerites and diorite porphyrites that break through them, as well as highly pyritized dolerites (up to 15 wt. % pyrite), contains (0.05–0.08) ±0.01 wt. % S. The maximum concentration of S in apatite (0.10–0.20 wt. %) is observed only in rocks (Cu)-Mo of the Talitsky deposit and the Verkhneuralsky ore occurrence. The highest concentration of S is observed in apatite from metasomatites formed during acid leaching. For example, in apatite from the apodiorite sericite-quartz metasomatite of the Vostochno-Artemovsky ore occurrence, the S content often reaches 0.04-0.07, and in individual crystals – 0.11–0.25 wt. %. The average S content in newly formed apatite crystals in pyrite-bearing metasomatites of the Gumeshevskoe deposit is usually 0.07-0.14 wt. %, and in two crystals – 0.24-0.53 wt. %. The authors conclude that the activity of S in the ore-forming fluid tended to increase with the acidic fluid alkalinization. In the Streltsov uranium ore field of the Southern Transbaikalia [48], the Talan manifestation of phosphates is known, which belong to the complex of Precambrian metamorophytes developed in the Southern Baikal region, on the Aldan, in China, the DPRK, Tanzania and other regions of the world. Phosphates are represented here by francolite and fluorapatite. Francolite is metamorphosed Middle-Riphean phosphorites, and fluoro-apatite is igneous, from the Middle-Riphean moderately alkaline peridotite-gabbro-gabbrodiorite complex, an example of which is the large Seligdar deposit in Yakutia [81, p. 38, 39].
1. Avdonina I.S., S.V. Pribavkin. Magmatic anhydrite and apatite in epidote-bearing porphyries in the Middle Urals // Lithosphere, 2013, No. 4. P. 62–72. Avdonina I.S., Pribavkin S.V. Magmaticheskiy angidrit i apatit v epidotsoderzhaschih porfirah Srednego Urala // Litosfera, 2013, № 4. S. 62–72.
2. Arzhannikova A.V., Jolivet M., Arzhannikov S. G., Vassallo, R., Chauvet, A. The age of formation and destruction of the Mesozoic-Cenozoic surface alignment in East Sayan // GEOL. and geofiz., 2013, vol. 54, No. 7. Pp. 894–905. Arzhannikova A.V., Zholive M., Arzhannikov S.G., Vassallo R., Shove A. Vozrast formirovaniya i destrukcii mezozoysko-kaynozoyskoy poverhnosti vyravnivaniya v Vostochnom Sayane // Geol. i geofiz., 2013, t. 54, № 7. S. 894–905.
3. Barkov A.Y. Nikiforov A.A. A new criterion of search areas of platinum mineralization of the type "Kivakka reef" // Vestn. Voronezh. State University. Ser. Geology, 2015, No. 4. pp. 75–83. [electronic resource]. Barkov A.Yu., Nikiforov A.A. Novyy kriteriy poiska zon platinometall'noy mineralizacii tipa «Kivakka rif» // Vestn. Voronezh. gos. un. Ser. Geologiya, 2015, № 4. S. 75–83. [Elektronnyy resurs].
4. Baturin G.N. Phosphate Accumulation in the Ocean. – M.: Nauka, 2004. 464 pp. Baturin G.N. Fosfatonakoplenie v okeane. – M.: Nauka, 2004. 464 s.
5. Baturin G.N. Phosphorites at the Bottom of the Oceans. – M.: Nauka, 1978. 232 pp. Baturin G.N. Fosfority na dne okeanov. – M.: Nauka, 1978. 232 s.
6. Baturin. G.N. Phosphorites of the Sea of Japan // Oceanology, 2012, vol. 52, No. 5. p. 721. Baturin G.N. Fosfority Yaponskogo morya // Okeanologiya, 2012, t. 52, № 5. S. 721.
7. Baturin G.N., Dubinchuk V.T. Genesis of uranium minerals and rare earths in the bone detritus of rare metal deposits // Dokl. RAS, 2011, vol. 438, No. 4. pp. 506–509. Baturin G.N., Dubinchuk V.T. Genezis mineralov urana i redkih zemel' v kostnom detrite redkometall'nyh mestorozhdeniy // Dokl. RAN, 2011, t. 438, № 4. S. 506–509.
8. Baturin, G.N., Dubinchuk V.T., Azarova L.A. Anashkina N.A., Ozhogin D.O. The apatite and associated igneous minerals in ferromanganese crusts from the Magellan Mountains // Oceanology, 2006, vol. 46, No. 6. Pp. 922–928. Baturin G.N., Dubinchuk V.T., Azarnova L.A., Anashkina N.A., Ozhogin D.O. Apatit i associiruyuschie s nim mineraly v zhelezomargancevyh korkah s Magellanovyh gor // Okeanologiya, 2006, t. 46, № 6. S. 922–928.
9. Bliskovsky V.Z. Material Composition and Dressing of Phosphorite Ores. – M.: Nedra, 1983. 200 pp. Bliskovskiy V.Z. Veschestvennyy sostav i obogatimost' fosforitovyh rud. – M.: Nedra, 1983. 200 s.
10. Bocharnikova T.D., Kholodnov V.V., Shagalov V.E. Halogens in apatite – as a reflection of the fluid regime in petro- and ore genesis of the Magnitogorsk ore-magmatic complex (Southern Urals) // Vestn. Ural. branch Ros. mineral. Soc., 2012, № 9. Pp. 28–33. Bocharnikova T.D., Holodnov V.V., Shagalov V.E. Galogeny v apatite – kak otrazhenie flyuidnogo rezhima v petro- i rudogeneze Magnitogorskogo rudno-magmaticheskogo kompleksa (Yuzhnyy Ural) // Vestn. Ural. otd-niya Ros. mineral. o-va, 2012, № 9. S. 28–33.
11. Gorbachev N.C., Shapovalov Yu.B., Kostyuk V.A. Experimental study of the system apatite–carbonate–H2O at P = 0.5 GPA, T= 1200 oC: efficiency of fluid transport in carbonatites // Dokl. Rus. Acad. Sci., 2017, vol. 473, No. 3. Pp. 331–335. Gorbachev N.S., Shapovalov Yu.B., Kostyuk A.V. Eksperimental'nye issledovaniya sistemy apatit–karbonat–N2O pri R = 0.5 GPA, T= 1200 oC: effektivnost' flyuidnogo transporta v karbonatitah // Dokl. RAN, 2017, t. 473, № 3. S. 331–335.
12. Gordienko V.V. Typomorphism of the chemical composition of garnet and apatite granitic pegmatites // Vopr. geokhim. and typomorphism of minerals, 2008, No. 6. Pp. 114–128. Gordienko V.V. Tipomorfizm himicheskogo sostava granata i apatita granitnyh pegmatitov // Vopr. geohim. i tipomorfizm mineralov, 2008, №6. S. 114–128.
13. Grabezhev A.I., Voronina L.K. Sulfur in apatites from copper-porphyry systems of the Urals // Yearbook-2011: Collection. – Ekaterinburg: IGG URO RAN, 2012. Pp. 68–70 (Tr. IGG URO RAN, vol. 159). Grabezhev A.I., Voronina L.K. Sera v apatitah iz medno-porfirovyh sistem Urala // Ezhegodnik-2011: Sbornik. – Ekaterinburg: IGG UrO RAN, 2012. S. 68–70 (Tr. IGG UrO RAN, vyp. 159).
14. Gusev A.I., Gusev N.I. Magnetite-apatite mineralization in the Western part of the Central Asian fold belt // Modern high technologies, 2013, no 2. Pp. 74–78. Gusev A.I., Gusev N.I. Apatit-magnetitovoe orudenenie zapadnoy chasti Central'no-Aziatskogo skladchatogo poyasa // Sovremennye naukoemkie tehnologii, 2013, №2. S. 74–78.
15. Gusev A. I., Gusev N.I. Geochemistry of ores and minerals pegmatite manifestations of Danilovskoe (Gorny Altai) // Intern. Journ. of applied and fundamental research, 2016, №10. Pp. 102–106. Gusev A.I., Gusev N.I. Geohimiya rud i mineralov pegmatitovogo proyavleniya Danilovskoe (Gornyy Altay) // Mezhdunarodnyy zhurnal prikladnyh i fundamental'nyh issledovaniy, 2016, №10. S. 102–106.
16. Denisova Yu. V. Thermometry apatite from the Nikolaishor granite massif (polar Urals) // 7 readings in the memory of corresponding member. RAS S.N. Ivanov: All-Russian scientific conference dedicated to the 70th anniversary of the founding of the Ural branch of the Russian mineralogical society, Yekaterinburg, 2018, IGG URO RAN. – Yekaterinburg: IGG URO RAN, 2018. Pp. 61–63. Denisova Yu.V. Termometriya apatita iz granitov Nikolayshorskogo massiva (Pripolyarnyy Ural) // 7 Chteniya pamyati chlen-korr. RAN S.N. Ivanova: Vserossiyskaya nauchnaya konferenciya, posvyaschennaya 70-letiyu osnovaniya Ural'skogo otdeleniya Rossiyskogo mineralogicheskogo obschestva, Ekaterinburg, 2018, IGG UrO RAN. – Ekaterinburg: IGG UrO RAN, 2018. S. 61–63.
17. Di Matteo A., Kuznetsova T.V., Nikolaev V.I., Spasskaya N.N., Yakumin P. Isotopic studies of bone remains of Yakut Pleistocene horses // Ice and snow, 2013, № 2. Pp. 93–101. Di Matteo A., Kuznecova T.V., Nikolaev V.I., Spasskaya N.N., Yakumin P. Izotopnye issledovaniya kostnyh ostatkov yakutskih pleystocenovyh loshadey // Led i sneg, 2013, № 2. S. 93–101.
18. Dubyna O.V., Krivak S.G., Samchuk A.I., Krasyuk O.P., Amashukeli Y. A. regularities of REE, Y, and Sr in apatite endogenous deposits of the Ukrainian shield (according to the ICP-MS) // Mineral. W., 2012, vol. 34, No. 2. Pp. 80–99. Dubina O.V., Krivdik S.G., Samchuk A.I., Krasyuk O.P., Amashukeli Yu.A. Zakonomernosti raspredeleniya REE, Y i Sr v apatitah endogennyh mestorozhdeniy Ukrainskogo schita (po dannym ICP-MS) // Mineral. zh., 2012, t. 34, № 2. S. 80–99.
19. Dubyna O.V., Krivak S. G., Sobolev V.B. Isomorphism in TR-apatite of the Chernigov carbonatite massif. Izomorphism in TR-apatites of the Chernigivsky carbonatite massif // Mineral. Zh., 2012. vol. 34, No. 3. Pp. 22–33. Dubina O.V., Krivdik S.G., Sobolev V.B. Izomorfizm v TR-apatitah Chernigivs'kogo karbonatitovogo masivu // Mineral. zh., 2012. t. 34, №3. S. 22–33.
20. Dudkin O.B. Apatite as a possible indicator of the sequence of formation of rocks of the Khibiny deposits // Petrology and mineralogy of the Kola region: 5 All-Russian. Fersman scientific session, dedicated to the 90th anniversary of the birth of E.K. Kozlov, Apatity 14–15 Apr., 2008. – Apatity: Geol. Inst. KSC RAS, 2008. Pp. 94–97. Dudkin O.B. Apatit kak vozmozhnyy indikator posledovatel'nosti formirovaniya porod hibinskih mestorozhdeniy // Petrologiya i minerageniya Kol'skogo regiona: 5 Vseross. Fersmanovskaya nauchnaya sessiya, posvyasch. 90-letiyu so dnya rozhdeniya d. g.-m. n. E. K. Kozlova, Apatity 14-15 apr., 2008. – Apatity: Geol. in-t KNC RAN, 2008. S. 94–97.
21. Dudkin O.B. REE of the Khibiny massif // Geology and Strategic Minerals of the Kola region: Proceedings of 10 Vseros. (with intern. participation) Fersman scientific session dedicated to 150th anniversary of the birth of Academician V.I. Vernadsky, Apatity, 7–10 Apr., 2013. – Apatity: Geol. Inst. KSC RAN, 2013. Pp. 124–127. Dudkin O.B. Redkie zemli Hibinskogo massiva // Geologiya i strategicheskie poleznye iskopaemye Kol'skogo regiona: Trudy 10 Vseros. (s mezhdun. uchastiem) Fersmanovskoy nauchnoy sessii, posvyasch. 150-letiyu so dnya rozhdeniya akad. V. I. Vernadskogo, Apatity, 7–10 apr., 2013. – Apatity: Geol. in-t KNC RAN, 2013. S. 124–127.
22. Dudchenko N.O. The peculiarity of the formation of a nitrogen-based radical in biogenic hydroxylapatite on the EPR data // Mineral. Zh., 2011, vol. 33, No. 3. Pp. 46–49. Dudchenko N.O. Osoblivosti formuvannya azotvmisnogo radikala u zrazkah biogennogo gidroksilapatitu za danimi EPR // Mineral. zh., 2011, t. 33, №3 . S. 46–49
23. Erokhin Yu.V., Ivanov K.S., Ponomarev V.S. Goyazite from metamorphic rocks of the Pre-Jurassic basement of the West Siberian megabasin // Vestn. Ural. branch Ros. mineral. Soc., 2016, No. 13. Pp. 52–61. Erohin Yu.V., Ivanov K.S., Ponomarev V.S. Goyacit iz metamorficheskih porod doyurskogo fundamenta Zapadno-Sibirskogo megabasseyna // Vestn. Ural. otd-niya Ros. mineral. o-va, 2016, № 13. S. 52–61.
24. Erokhin Yu.V., Hiller V.V., Ivanov K.S., Burlakov E.V., Kleimenov D.A., Berzin S.V. Phosphates from meteorites "Ural", "Ozernoye" and "Chelyabinsk" // Vestn. Ural. branch Ros. mineral. Soc., 2014, No. 11. Pp. 39–47. Erohin Yu.V., Hiller V.V., Ivanov K.S., Burlakov E.V., Kleymenov D.A., Berzin S.V. Fosfaty iz meteoritov "Ural", "Ozernoe" i "Chelyabinsk" // Vestn. Ural. otd-niya Ros. mineral. o-va, 2014, № 11. S. 39–47.
25. Zanin Yu.N., Zamiralov A.G., Fomin A.N., Pisarev G.M. Strontium in the structure of sedimentary apatite in the process of catagenesis // Dokl. Russian Academy of Sciences, 1997, vol. 352, No. 2. Pp. 235–237. Zanin Yu.N., Zamiraylova A.G., Fomin A.N., Pisareva G.M. Stronciy v strukture osadochnogo apatita v processah katageneza // Dokl. RAN, 1997, t. 352, № 2. S. 235–237.
26. Ivanovskaya A.V., Zanin Yu. N. Phosphorites of the stalinogorsk formation of the Middle Riphean Turukhansk uplift, Eastern Siberia // Lithosphere, 2008, №1. Pp. 90–99. Ivanovskaya A.V., Zanin Yu.N. Fosfority strel'nogorskoy svity srednego rifeya Turuhanskogo podnyatiya, Vostochnaya Sibir' // Litosfera, 2008, №1. S. 90–99.
27. Ilyin V.A. Ancient (Ediacaran) Phosphorites. – M.: GEOS, 2008. 160 Pp. (Tr. GIN RAS, vol. 587). Il'in A.V. Drevnie (ediakarskie) fosfority. – M.: GEOS, 2008. 160 s. (Tr. GIN RAN, vyp. 587).
28. Kalinichenko E.A., Brik A.B., Kalinichenko A. M., Gatsenko V.A., Frank-Kamenetskaya O.V., Bagmut N.N. The particular properties of apatites from different species of the Chemerpole (Middle Near-Bug) according radiospectroscopy // Mineral. Z., 2014, vol. 36, No. 4. Pp. 50–65. Kalinichenko E.A., Brik A.B., Kalinichenko A.M., Gacenko V.A., Frank-Kameneckaya O.V., Bagmut N.N. Osobennosti svoystv apatitov iz raznyh porod Chemerpolya (Srednee Pobuzh'e) po dannym radiospektroskopii // Mineral. zh., 2014, t. 36, № 4. S. 50–65.
29. Katkova V.I. Pseudomorphs of bioapatite on octocalciumphosphate // Vestn. In-ta geol. Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences, 2012, No. 6. Pp. 11–14. Katkova V.I. Psevdomorfozy bioapatita po oktakal'ciyfosfatu // Vestn. In-ta geol. Komi NC UrO RAN, 2012, № 6. S. 11–14.
30. Kiseleva D.V., Zaitseva M.V. Determination of the trace element composition of REE in biogenic apatite of Upper Devonian conodonts (Southern Urals) by the ISP-MS method with laser ablation // Ural Mineralogical School, 2017, No. 23. Pp. 98–101. Kiseleva D.V., Zayceva M.V. Opredelenie mikroelementnogo sostava RZE v biogennom apatite verhnedevonskih konodontov (Yuzhnyy Ural) metodom ISP-MS s lazernoy ablyaciey // Ural'skaya mineralogicheskaya shkola, 2017, № 23. S. 98–101.
31. Kogarko L.N. Rare-earth potential of apatite in deposits and waste products of apatite-nepheline ores of the Khibiny massif // Tr. Fersman sci. sessions of the GI KSC RAN, 2019, No. 16. Pp. 271–275. Kogarko L.N. Redkozemel'nyy potencial apatita v mestorozhdeniyah i othodah proizvodstva apatito-nefelinovyh rud Hibinskogo massiva // Tr. Fersmanovskoy nauch. sessii GI KNC RAN, 2019, № 16. S. 271–275.
32. Kolonin R.G., Shironosova G.P., Palessky S.V., Fedorin M.A., Kandinv M.N., Pohova V.I., Repina S.A., Shvetsova I.V. Rare-earth elements of Ural monazites and models of physico-chemical conditions of mineral formation // Mineralogy of the Urals-2007: Mater. 5 Vseros. Meeting, Miass, August 20-25, 2007: Collection of scientific articles. – Miass, Yekaterinburg: Ural Branch of the Russian Academy of Sciences, 2007. Pp. 246–250. Kolonin R.G., Shironosova G.P., Palesskiy S.V. , Fedorin M.A., Kandinov M.N., Popova V.I., Repina S.A., Shvecova I.V. Redkozemel'nye elementy monacitov Urala i modeli fiziko-himicheskih usloviy mineraloobrazovaniya // Mineralogiya Urala-2007: Mater. 5 Vseros. sovesch., Miass, 20–25 avgusta 2007 g.: Sbornik nauchnyh statey. – Miass, Ekaterinburg: UrO RAN, 2007. S. 246–250.
33. Konovalova E.V., Pribilkin S.V., Zamyatin D.A., Kholodnov V.V. Sulfur in apatites of granites of the Shartash massif and the Berezovsky gold deposit // Yearbook-2011: Collection. – Ekaterinburg: IGG URO RAN, 2012. Pp. 134–138 (Tr. IGG URO RAN, vol. 159). Konovalova E.V., Pribavkin S.V., Zamyatin D.A., Holodnov V.V. Sera v apatitah granitov Shartashskogo massiva i Berezovskogo zolotorudnogo mestorozhdeniya // Ezhegodnik-2011: Sbornik. – Ekaterinburg: IGG UrO RAN, 2012. S. 134–138 (Tr. IGG UrO RAN, vyp. 159).
34. Konovalova E. V., Kholodnov V. V., Pribavkin S. V., Zamyatin D. A. Elements-mineralizer (sulfur and Halogens) in Apatity Shartash granite massif and Berezovsky gold deposits // Lithosphere, 2013, No. 6. Pp. 65–72. Konovalova E.V., Holodnov V.V., Pribavkin S.V., Zamyatin D.A. Elementy-mineralizatory (sera i galogeny) v apatitah Shartashskogo granitnogo massiva i Berezovskogo zolotorudnogo mestorozhdeniya // Litosfera, 2013, № 6. S. 65–72.
35. Konopleva N.G., Ivanyuk G.Yu., Pakhomovsky Ya.A., Yakovenchuk V.N., Mikhailova Yu.A. Typomorphism of fluorapatite in the Khibiny alkaline massif (Kola Peninsula) // Zap. Rus. Mineral. Soc. 2013, vol. 142, No. 3. Pp. 65–83. Konopleva N.G., Ivanyuk G.Yu., Pahomovskiy Ya.A., Yakovenchuk V.N., Mihaylova Yu.A. Tipomorfizm ftorapatita v Hibinskom schelochnom massive (Kol'skiy poluostrov) // Zap. Ros. mineral. o-va, 2013, t. 142, № 3. S. 65–83.
36. Korinevsky V.G., Filippova K.A., Kotlyarov V.A., korinevsky E.V., Artemyev D.A. Trace elements in minerals of some rare species of the Southern Urals // Lithosphere, 2019, vol. 19, No. 2. Pp. 269–292. Korinevskiy V.G., Filippova K.A., Kotlyarov V.A., Korinevskiy E.V., Artem'ev D.A. Elementy-primesi v mineralah nekotoryh redko vstrechayuschihsya porod Yuzhnogo Urala // Litosfera, 2019, t. 19, №2. S. 269–292.
37. Korovko A.V., Kholodnov V.V., Pribavkin S.V., Konovalova E.V., Mikheeva A.V. Halogens and sulfur in hydroxyl-bearing minerals in East Verkhoturye diorite-granodiorite array of mineralizatsii in the form of native copper (Middle Urals) // Yearbook-2017: the Collection. – Ekaterinburg: IGG URO RAN, 2018. Pp. 189–193 (Tr. IGG URO RAN, vol. 165). Korovko A.V., Holodnov V.V., Pribavkin S.V., Konovalova E.V., Miheeva A.V. Galogeny i sera v gidroksilsoderzhaschih mineralah Vostochno-Verhoturskogo diorit-granodioritovogo massiva s mineralizaciy v vide samorodnoy medi (Sredniy Ural) // Ezhegodnik-2017: Sbornik. – Ekaterinburg: IGG UrO RAN, 2018. S. 189–193 (Tr. IGG UrO RAN vyp. 165).
38. Krestianinov E.A. Apatite as an indicator of the genesis of carbonatite Mayksk manifestations (South Ural) // Metallogeny of ancient and modern oceans, 2011, №1. Pp. 252–255. Krest'yaninov E.A. Apatit kak indikator genezisa Maukskogo karbonatitovogo proyavleniya (Yuzhnyy Ural) // Metallogeniya drevnih i sovremennyh okeanov, 2011, №1. S. 252–255.
39. Lemesheva S.A., Golovanova O.A., Turenkov S. V. Study of the characteristics of the composition of bone tissues // Chemistry for sustainable development, 2009, vol. 17, No. 3. Pp. 327–332. Lemesheva S.A., Golovanova O.A., Turenkov S.V. Issledovanie osobennostey sostava kostnyh tkaney cheloveka // Himiya v interesah ustoychivogo razvitiya, 2009, t. 17, № 3. S. 327–332.
40. Liferovich, R.P., Bayanova T. B., Gogol O.V., Sherstennikov O.G., Delenitsin O.A.. Genesis intersects phosphate mineralization within the Kovdor will phoscorite-carbonatite complex // Vestn. MSTU. Tr. Murmansk. State Technical University. 1998, vol. 1, No. 3. Pp. 61–68. Liferovich R.P., Bayanova T.B., Gogol' O.V., Sherstenikova O.G., Delenicin O.A. Genezis postkarbonatitovoy fosfatnoy mineralizacii v predelah Kovdorskogo foskorit-karbonatitovogo kompleksa // Vestn. MGTU. Tr. Murmansk. gos. tehn. un–ta, 1998, t. 1, №3. S. 61–68.
41. Lobova E.V. Evolution of amphibole and apatite from rocks of the Reftinsky complex (Eastern zone of the Middle Urals) // Vestn. Ural. branch Ros. mineral. Soc., 2012, No. 9. Pp. 84–87, 152. Lobova E.V. Evolyuciya amfibola i apatita iz porod Reftinskogo kompleksa (Vostochnaya zona Srednego Urala) // Vestn. Ural. otd-niya Ros. mineral. o-va, 2012, №9. S. 84–87, 152.
42. Malkov B.A., Lysyuk A.Yu., Ivanova T.I. Mineral composition and trace elements of fossilized bones of sea lizards located in Kargort (Komi Republic) // Vestn. Inst geol. Komi SC URO RAN, 2004, No. 1. Pp. 12–16. Mal'kov B.A., Lysyuk A.Yu., Ivanova T.I. Mineral'nyy sostav i mikroelementy okamenelyh kostey morskih yascherov mestonahozhdeniya Kargort (Respublika Komi) // Vestn. In-ta geol. Komi NC UrO RAN, 2004, № 1. S. 12–16.
43. Maslov A.V. Pre-Ordovician phosphorites and paleoceanography: a brief geochemical excursion into the systematics of rare earth elements // Lithosphere, 2017, No. 1. Pp. 5–30. [electronic resource]. Maslov A.V. Doordovikskie fosfority i paleookeanografiya: kratkiy geohimicheskiy ekskurs v sistematiku redkozemel'nyh elementov // Litosfera, 2017, № 1. S. 5–30. [Elektronnyy resurs].
44. Maslov A.V. Phosphorites of the Neoproterozoic–Cambrian and paleoceanography: data on the distribution of rare earth elements // Yearbook-2015: Collection. - Yekaterinburg: IGG URO RAN, 2016. pp. 102-107. (Tr. IGG URO RAN, issue 163). Maslov A.V. Fosfority neoproterozoya–kembriya i paleookeanografiya: dannye po raspredeleniyu redkozemel'nyh elementov // Ezhegodnik-2015: Sbornik. – Ekaterinburg: IG i G UrO RAN, 2016. S. 102–107. (Tr. IGG UrO RAN, vyp. 163).
45. Mineev D.A. Lanthanides in Minerals. – M.: Nedra, 1969. 182 pp. Mineev D.A. Lantanoidy v mineralah. — M.: Nedra, 1969. 182 s.
46. Mineev D.A. Lanthanides in Ores of Rare-Earth and Complex Deposits – M.:Nauka, 1974. 237 pp. Mineev D.A. Lantanoidy v rudah redkozemel'nyh i kompleksnyh mestorozhdeniy – M.:Nauka, 1974. 237 s.
47. Oparin N.A., Oleinikov O.B., Baranov L.N. Apatite from kimberlite pipe Manchary (Central Yakutia) // Natural resources of the Arctic and Subarctic, 2020, vol. 25, No. 3. Pp. 15–24. Oparin N.A., Oleynikov O.B., Baranov L.N. Apatit iz kimberlitovoy trubki Manchary (Central'naya Yakutiya) // Prirodnye resursy Arktiki i Subarktiki, 2020, t. 25, № 3. S. 15–24.
48. Pavlenko Y.V. Phosphates Streltsovsky ore field in South-Eastern Transbaikalia (part II) // Vestn. Zabaikalsky State University, 2021, vol. 27. No.3. pp. 42-52. Pavlenko Yu.V. Fosfaty Strel'covskogo rudnogo polya Yugo-Vostochnogo Zabaykal'ya (chast' II) // Vestn. Zabaykal'skogo gos. un-ta, 2021, t. 27. №3. S. 42–52.
49. Potapov S.S. Repina S.A., Potapov D.S. Mineralogical and chemical features of the tooth of a mammoth // Mineralogy of technogenesis, 2007, vol. 8. Pp. 139–145. Potapov S.S., Repina S.A., Potapov D.S. Mineralogo-himicheskie osobennosti zuba mamonta // Mineralogiya tehnogeneza, 2007, t. 8. S. 139–145.
50. Rakhimov I.R., Kholodnov V.V., Salikhov D.N. Accessory apatite from gabbroids late Devonian–early Carboniferous West of the Magnitogorsk zone: morphology and chemical composition, indicator metallogenic role // Geological Bulletin, 2018, no. 3. Pp. 109–123. Rahimov I.R., Holodnov V.V., Salihov D.N. Akcessornye apatity iz gabbroidov pozdnego devona–rannego karbona Zapadno-Magnitogorskoy zony: osobennosti morfologii i himicheskogo sostava, indikatornaya metallogenicheskaya rol' // Geologicheskiy vestnik, 2018, № 3. S. 109–123.
51. Ripp G.S., Khodyreva E.V., Isbroken I.A., Ramelow M.O., Lastochkin E.I., Posokhov V.F. Genetic nature of the apatite-magnetite ores of the North-Gurvunur deposit (Western Transbaikalia) // Geol. rudn. deposits, 2017, vol. 59, No. 5. Pp. 419–33. Ripp G.S., Hodyreva E.V., Izbrodin I.A., Rampilov M.O., Lastochkin E.I., Posohov V.F. Geneticheskaya priroda apatit-magnetitovyh rud Severo-Gurvunurskogo metorozhdeniya (Zapadnoe Zabaykal'e) // Geol. rudn. m-niy, 2017, t. 59, № 5. S. 419–433.
52. Rosen O.M., Abbyasov A.A., Baturin G.N., Litvinova T.V. Calculation of the mineral composition of phosphate to facial reconstructions of the chemical analyses (program MINILITH) // Type of sedimentogenesis and lithogenesis and their evolution in the history of the Earth: materials of the 5th all-Russian lithological conference, Ekaterinburg, 14–16 Oct. 2008. Vol. 2. – Ekaterinburg: URO RAN, 2008. Pp. 200–203. Rozen O.M., Abbyasov A.A., Baturin G.N., Litvinova T.V. Raschet mineral'nogo sostava fosforitov dlya facial'nyh rekonstrukciy po himicheskim analizam (programma MINILITH) // Tipy sedimentogeneza i litogeneza i ih evolyuciya v istorii Zemli: Materialy 5 Vserossiyskogo litologicheskogo soveschaniya, Ekaterinburg, 14–16 okt. 2008. T. 2. – Ekaterinburg: UrO RAN, 2008. S. 200–203.
53. Rosen, O. M., Solov'ev A. V. Fission-track dating of apatite from the core of the deep wells of the Siberian platform – an indicator of the intense heating of the sedimentary cover during the intrusion of platobasalts // Geology, Geophysics and mineral resources of Siberia: materials of the 1st Scientific and practical conference, Novosibirsk, 29-31 Jan., 2014. Vol. 2. – Novosibirsk: SNIIGGIMS, 2014. Pp. 162–163. Rozen O.M., Solov'ev A.V. Trekovoe datirovanie apatitov iz kerna glubokih skvazhin Sibirskoy platformy — pokazatel' intensivnogo progreva osadochnogo chehla vo vremya vnedreniya platobazal'tov // Geologiya, geofizika i mineral'noe syr'e Sibiri: Materialy 1 Nauchno-prakticheskoy konferencii, Novosibirsk, 29-31 yanv., 2014. T. 2. – Novosibirsk: SNIIGGMS, 2014. S. 162–163.
54. Ryabov V.V., Simonov O.N., Snisar S.G. Fluorine and chlorine in apatites, micas and amphiboles of the trap layered intrusions of the Siberian platform // Geol. and geofiz., 2018, vol. 59, No. 4. Pp. 453–466. [Electronic resource]. Ryabov V.V., Simonov O.N., Snisar S.G. Ftor i hlor v apatitah, slyudah i amfibolah rassloennyh trappovyh intruziy Sibirskoy platformy // Geol. i geofiz., 2018, t. 59, № 4. S. 453–466. [Elektronnyy resurs].
55. Savelyeva V.B., Bazarova E.P., Sharygin V.V., Karmanov N.S., Kanakin S.V. Metasomatites of the Onguren carbonatite complex (Western Baikal region): geochemistry and composition of accessory minerals//Geol. rudn. deposits, 2017, vol.59. No. 4. Pp. 319–346. Savel'eva V.B., Bazarova E.P., Sharygin V.V., Karmanov N.S., Kanakin S.V. Metasomatity Ongurenskogo karbonatitovogo kompleksa (Zapadnoe Pribaykal'e): geohimiya i sostav akcessornyh mineralov // Geol. rudn. m-niy, 2017, t. 59. № 4. S. 319–346.
56. Savenko A.V. On the physico-chemical mechanism of diagenetic formation of modern ocean phosphorites // Geochemistry, 2010, No. 2. Pp. 208–215. Savenko A.V. O fiziko-himicheskom mehanizme diageneticheskogo formirovaniya sovremennyh okeanskih fosforitov // Geohimiya, 2010, №2. S. 208–215.
57. Savenko V.S., Savenko A.V. Geochemistry of Phosphorus in the Global Hydrological Cycle. – M.: GEOS, 2007. 248 Pp. Savenko V.S., Savenko A.V. Geohimiya fosfora v global'nom gidrologicheskom cikle. – M.: GEOS, 2007. 248 s.
58. Savko K.A., Pilyugin S.M., Novikova M.A. Composition of apatite from rocks of different ages of ferruginous-siliceous formations of the Voronezh crystalline massif – as an indicator of the fluid regime of metamorphism / Vestn. Voronezh. state University. Ser. Geology. 2007, No. 2. Pp. 78–93. Savko K.A., Pilyugin S.M., Novikova M.A. Sostav apatita iz porod raznovozrastnyh zhelezisto-kremnistyh formaciy Voronezhskogo kristallicheskogo massiva – kak pokazatel' flyuidnogo rezhima metamorfizma / Vestn. Voronezh. gos. un-ta. Ser. Geologiya. 2007, № 2. S. 78–93.
59. Safin T. H., Dubinin A.V., Kuznetsov, A. B., Rimskaya-Korsakova, M. N. A study of the age of biogenic apatite from nodules of the Cape basin by the strontium isotope chemostratigraphy and establishing growth rates oxyhydroxide phases // Marine studies: 8th conference of young scientists, Vladivostok, June 6–9, 2018: conference proceedings. – Vladivostok: Dalnauka, 2018. Pp. 102–106. Safin T.H., Dubinin A.V., Kuznecov A.B., Rimskaya-Korsakova M.N. Issledovanie vozrasta biogennogo apatita iz konkreciy Kapskoy kotloviny metodom stroncievoy izotopnoy hemostratigrafii i ustanovlenie skorostey rosta oksigidroksidnyh faz // Okeanologicheskie issledovaniya: 8 konferenciya molodyh uchenyh, Vladivostok, 6-9 iyunya, 2018: Materialy konferencii. – Vladivostok: Dal'nauka, 2018. S. 102–106.
60. Serova A.A., Spiridonov E.M. Three types of apatite in Norilsk sulfide ores // Geochemistry, 2018, No. 5. Pp. 474–484 [Electronic resource]. Serova A.A., Spiridonov E.M. Tri tipa apatita v noril'skih sul'fidnyh rudah // Geohimiya, 2018, № 5. S. 474–484 [Elektronnyy resurs].
61. Soloviev A.V. Study of Tectonic Processes in the Areas of Convergence of Lithospheric Plates by Methods of Isotope Dating and Structural Analysis: Abstract. dis. for the application of a scientist. degree of Doctor of Geological Sciences – M.: GIN RAS, 2005. 49 pp. Solov'ev A.V. Izuchenie tektonicheskih processov v oblastyah konvergencii litosfernyh plit metodami izotopnogo datirovaniya i struktrunogo analiza: Avtoref. dis. na soiskanie uchen. stepeni doktora geol.-min. nauk. – M.: GIN RAN, 2005. 49 s.
62. Soloviev V.A., Garver J.I. Post-collisional exhumation of the complexes in Northern Kamchatka (Lesnovsk lifting) // Dokl. Russian Academy of Sciences, 2012, vol. 443, No. 1. Pp. 92–96. Solov'ev A.V., Garver Dzh.I. Postkollizionnaya eksgumaciya kompleksov Severnoy Kamchatki (Lesnovskoe podnyatie) // Dokl. RAN, 2012, t. 443, № 1. S. 92–96.
63. Soroka E.I., Leonova L.V. Anfimov A.L., Apatite shell of the Devonian foraminifera (Safianovsk copper-pyrite deposit, the Middle Urals) // Izv. Uralsk. state. Gorny University, 2018, No. 3(51). Pp. 34–39. Soroka E.I., Leonova L.V., Anfimov A.L. Apatitovye rakoviny devonskih foraminifer (Saf'yanovskoe mednokolchedannoe mestorozhdenie, Sredniy Ural) // Izv. Ural'sk. gos. Gornogo un-ta, 2018, № 3(51). S. 34–39.
64. Taylor S.R., McLennan S.M. Continental Crust: its Composition and Evolution: Russian translation). - M.: Mir, 1988. 384 p. Teylor S.R., Mak-Lennan S.M. Kontinental'naya kora: ee sostav i evolyuciya. – M.: Mir, 1988. 384 s.
65. Felitsyn S.B., Bogomolov E.S. Isotope-geochemical systematics of gold-bearing biogenic apatites from the Lower Paleozoic deposits of Baltoscandia // Dokl. RAS, 2013, vol. 451, No. 6. pp. 680–683. Felicyn S.B., Bogomolov E.S. Izotopno-geohimicheskie sistematiki zolotosoderzhaschih biogennyh apatitov iz nizhnepaleozoyskih otlozheniy Baltoskandii // Dokl. RAN, 2013, t. 451, № 6. S. 680–683.
66. Faore G. Fundamentals of Isotope Geology: Russian translation. – M.: Mir, 1989. 590 pp. For G. Osnovy izotopnoy geologii. – M.: Mir, 1989. 590 s.
67. Frank-Kamenetskaya O.V., Rozhdestvenskaya I.V., Rosseeva E.V., Zhuravlev A.V. Refinement of the atomic structure of apatite of the albinoi tissue of Upper Devonian conodonts // Crystallography, 2014, vol. 59, No. 1. Pp. 46–52. Frank-Kameneckaya O.V., Rozhdestvenskaya I.V., Rosseeva E.V., Zhuravlev A.V. Utochnenie atomnoy struktury apatita al'bidnoy tkani pozdnedevonskih konodontov // Kristallografiya, 2014, t. 59, № 1. S. 46–52.
68. Khattak N.U., Asif Khan Mohammad, Ali Nawab, Abbas S. M., Tahirkheli T.K. Evaluation of time and level of implementation of the carbonatite complex Silly Patti, district Malakand, North-Western Pakistan: the limitations of the data dating signs of the fission tracks // Geol. and geofiz., 2012, vol. 53, No. 8. Pp. 964–974. Hattak N.U., Azif Han Muhammad, Ali Navab, Abbas S.M., Tahirkeli T. K. Ocenka vremeni i urovnya vnedreniya karbonatitovogo kompleksa Sillay Patti, rayon Malakand, Severo-Zapadnyy Pakistan: ogranicheniya, nakladyvaemye dannymi datirovaniya po sledam raspada // Geol. i geofiz., 2012, t. 53, № 8. S. 964–974.
69. Kholodnov V.V., Konovalova E.V. Morphology and other typomorphic properties of apatite in granitoids of the Urals with quartz-vein gold mineralization // Ural mineralogical school of 2012. – Ekaterinburg: IGG URO RAN, 2012. Pp. 186–191. Holodnov V.V., Konovalova E.V. Morfologiya i drugie tipomorfnye svoystva apatita v granitoidah Urala s kvarc-zhil'nym zolotym orudeneniem // Ural'skaya mineralogicheskaya shkola-2012. – Ekaterinburg: IG i G UrO RAN, 2012. S. 186–191.
70. Kholodnov V.V., Salikhov D.N., Rakhimov I.R. Halogens and sulfur in apatite – as an indicator of potential ore-bearing late Paleozoic magmatic complexes of the West Magnitogorsk zone on Cr-Ni, Fe-Ti and Au mineralization // Geology, minerals and problems of geoecology of Bashkortostan, the Urals and adjacent territories, 2016, No. 11. Pp. 168–170. Holodnov V.V., Salihov D.N., Rahimov I.R. Galogeny i sera v apatitah – kak indikator potencial'noy rudonosnosti pozdnepaleozoyskih magmaticheskih kompleksov Zapadno-Magnitogorskoy zony na Sg-Ni, Fe-Ti i Au orudenenie // Geologiya, poleznye iskopaemye i problemy geoekologii Bashkortostana, Urala i sopredel'nyh territoriy, 2016, № 11. S. 168–170.
71. Kholodnov V.V., Salikhov D.N., Rakhimov I.R., Shagalov E.S., Konovalova E.V. Halogens and sulfur in apatites as a sign of specialization and Late Paleozoic accretion-collisional gabbro-dolerites of the West Magnitogorsk zone on Cu-Ni and Au mineralization // Yearbook-2014: Collection. – Ekaterinburg: IGG URO RAN, 2015. Pp. 214–221 (Tr. IGG URO RAN, vol. 162). Holodnov V.V., Salihov D.N., Rahimov I.R., Shagalov E.S., Konovalova E.V. Galogeny i sera v apatitah kak priznak specializacii i pozdnepaleozoyskih akkrecionno-kollizionnyh gabbro-doleritov Zapadno-Magnitogorskoy zony na Su-Ni i Au orudenenie // Ezhegodnik-2014: Sbornik. – Ekaterinburg: IG i G UrO RAN, 2015. S. 214–221 (Tr. IGG UrO RAN, vyp. 162).
72. Kholodnov V.V., Salikhov D.N., Shagalov E.S., Konovalova E.V., Rakhimov I.R. The Role of halogens and sulfur in apatites in the assessment of potential ore-bearing gabbros of the Late Paleozoic of West Magnitogorsk zone (S. Ural) on Cu-Ni, Fe-Ti and Au mineralization // Mineralogy, 2015, No. 3. Pp. 45–61. Holodnov V.V., Salihov D.N., Shagalov E.S., Konovalova E.V., Rahimov I.R. Rol' galogenov i sery v apatitah pri ocenke potencial'noy rudonosnosti pozdnepaleozoyskih gabbroidov Zapadno-Magnitogorskoy zony (Yu. Ural) Su-Ni, Fe-Ti i Au orudenenie // Mineralogiya, 2015, № 3. S. 45–61.
73. Kholodnov V.V., Shagalov E.S., Konovalova E.V. Geochemistry of apatite in intrusive rocks of the Urals characterized by various ore specialization // Yearbook-2009: Collection. – Yekaterinburg: IGG UrO RAN, 2010. Pp. 190–195 (Tr. IGG UrO RAN, issue 157). Holodnov V.V., Shagalov E.S., Konovalova E.V. Geohimiya apatita v intruzivnyh porodah Urala, harakterizuyuschihsya razlichnoy rudnoy specializaciey // Ezhegodnik-2009: Sbornik. – Ekaterinburg: IGG UrO RAN, 2010. S. 190–195 (Tr. IGG UrO RAN, vyp. 157).
74. Chaika I.F., Izokh A.E. Phosphate-fluoride-carbonate mineralization in rocks of lamproite series of Rybinov massif (Central Aldan): mineralogical and geochemical characteristics and genesis problem // Mineralogy, 2017, vol. 3, No. 1. Pp. 38–51. Chayka I.F., Izoh A.E. Fosfatno-ftoridno-karbonatnaya mineralizaciya v porodah lamproitovoy serii massiva Ryabinovyy (Central'nyy Aldan): mineralogo-geohimicheskaya harakteristika i problema genezisa // Mineralogiya, 2017, t. 3, №1. S. 38–51.
75. Chaikina M. V. Bulina N. V., Prosanov I.Yu., Ishchenko A.V., Medvedko O.V., Aronov A.M. Mechanochemical synthesis of hydroxyapatite with SIO44– substitutions // Chemistry for sustainable development, 2012, vol. 20, No. 4. P. 477-489. Chaykina M.V., Bulina N.V., Prosanov I.Yu., Ischenko A.V., Medvedko O.V., Aronov A.M. Mehanohimicheskiy sintez gidroksilapatita s SIO44– zamescheniyami // Himiya v interesah ustoychivogo razvitiya, 2012, t. 20, №4. S. 477–489.
76. Chuprov A.A., Badmatsyrenova R.A., Batueva A.A. Apatite mineralization of the Oshurekov gabbro-pegmatite massiv, Transbaikalia: data from LA-ICP-MS analysis // Metallogeny of ancient and modern oceans, 2021, vol. 27. Pp. 144–146. Chuprova A.A., Badmacyrenova R.A., Batueva A.A. Apatitovaya mineralizaciya Oshurekovskogo gabbro-pegmatitovogo massiva, Zabaykal'e: dannye LA-ISP-MS analiza // Metallogeniya drevnih i sovremennyh okeanov, 2021, t. 27. S. 144–146.
77. Shatrov V.A., Voitsekhovsky G.V. Reconstruction of phosphate formation environments // Geol. and geophys., 2009, vol. 50, No. 10. Pp.1104–1118. Shatrov V.A., Voycehovskiy G.V. Rekonstrukciya obstanovok fosfatoobrazovaniya // Geol. i geofiz., 2009, t. 50, №10. S.1104–1118.
78. Shironosova G.P., Kolonin G.R. Thermodynamic modeling of REE distribution between monazite, fluorite and apatite // Dokl. RAN, 2013, vol. 450, No. 4. Pp. 455–459. Shironosova G.P., Kolonin G.R. Termodinamicheskoe modelirovanie raspredeleniya RZE mezhdu monacitom, flyuoritom i apatitom // Dokl. RAN, 2013, t. 450, № 4. S. 455–459.
79. Shnug E., Haneklaus N. Extraction of uranium from phosphate ores: ecological aspects // Atomic engineering abroad, 2013, No. 9. Pp. 20–24. Shnug E., Haneklaus N. Izvlechenie urana iz fosfatnyh rud: ekologicheskie aspekty // Atomnaya tehnika za rubezhom, 2013, №9. S. 20–24.
80. Yudovich Ya.E., Ketris M.P. Geochemical Indicators of Lithogenesis (Lithological Geochemistry). – Syktyvkar: Geoprint, 2011. 740 pp. Yudovich Ya.E., Ketris M.P. Geohimicheskie indikatory litogeneza (litologicheskaya geohimiya). – Syktyvkar: Geoprint, 2011. 740 s.
81. Yudovich Ya.E., Ketris M.P., Rybina N.V. Geochemistry of Rhosphorus. – Syktyvkar: IG Komi SC UrO RAN, 2020. 512 pp. Yudovich Ya.E., Ketris M.P., Rybina N.V. Geohimiya fosfora. – Syktyvkar: IG Komi NC UrO RAN, 2020. 512 s.
82. Adcock C.T., Hausrath E.M., Forster P.M., Tschauner O., Sefein K.J. Synthesis and characterization of the Mars-relevant phosphate minerals Fe- and Mg-whitlockite and merrillite and a possible mechanism that maintains charge balance during whitlockite to merrillite transformation // Amer. Mineral., 2014, vol. 99, № 7. P. 1221–1232.
83. Barham M., Murray J., Joachimski M.M., Williams D.M. The onset of the Permo-Carboniferous glaciation: reconciling global stratigraphic evidence with biogenic apatite δ18O records in the late Visean // J. Geol. Soc., 2012, vol.169, № 2. P. 119–122.
84. Belousova E.A., Griffin W.L., O’Reilly S.Y., Fisher N.I. Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type // J. Geochem. Explor., 2002, vol. 76, № (1). P. 45–69.
85. Belousova E.A., Walters S., Griffin W.L., O’Reilly S.Y. Trace-element signatures of apatites in granitoids from the Mt Isa Inlier, Northwestern Queensland // Aust. J. Earth Sci., 2001, vol. 48. R. 603–619.
86. Bromiley G.D. Do concentrations of Mn, Eu and Ce in apatite reliably record oxygen fugacity in magmas? // Lithos, 2021, vol. 384–385. 105900.
87. Broom-Fendley S., Heaton T., Wall F., Gunn G. Tracing the fluid source of heavy REE mineralisation in carbonatites using a novel method of oxygen-isotope analysis in apatite: The example of Songwe Hill, Malawi // Chem. Geol., 2016. 440. P. 275–287. [Electronic resource].
88. Brown W.F., Lehr J.R., Smith J.R., William A.F. Crystallography of octocalciumphosphate // J. Amer. Chem. Soc., 1957, vol. 79, № 19. P. 5378–5379.
89. Buggisch W., Joachimsry M.M., Sevastopulo G., Morrow J.R. Mississippian δ13Skarb and conodont apatite δ18O records – Their relation to the Late Palaeozoic Glaciation // Palaeogeogr., Palaeoclim., Palaeoecol., 2008, vol. 69, № 3–4. P. 273–292.
90. Cavazza W., Federici I., Okay A.I., Zattin M. Apatite fission-track thermochronology of the Western Pontides (NW Turkey) // Geol. Mag., 2012., vol. 149, № 1. P. 133–140.
91. Chakhmouradian A.R., Reguir E.P., Zaitsev A.N., Coueslan C., Xu C., Kynický J., Mumin A.H., Yang P. Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance // Lithos : An International Journal of Mineralogy, Petrology and Geochemistry, 2017, vol. 274-275. P. 188–213. [Electronic resource].
92. Charlier V., Namurn O., Bolle O., Latypov R., Duchesne J.-C. Fe–Ti–V–P ore deposits associated with Proterozoic massif-type anorthosites and related rocks // Earth-Science Reviews, 2015, vol. 141. P. 56–81.
93. Chen J., Algeo T.J., Zhao L., Chen Z.-Q., Cao L., Zhang L., Li Y. Diagenetic uptake of rare earth elements by bioapatite, with an example from Lower Triassic conodonts of South China // Earth-Science Reviews, 2015, vol. 149. P. 181–202.
94. Corcoran D.V., Dore A. G. A review of techniques for the estimation of magnitude and timing of exhumation in offshore basins // Earth-Science Reviews, 2005, vol. 72, № 3–4. P. 129–168.
95. Dempster T.J., Jolivet M., Tubrett M.N., Braithwaite C.J.R. Magmatic zoning in apatite: a monitor of porosity and permeability change in granites // Contrib. Mineral. Petrology, 2003, vol. 145. P. 568–577.
96. Dutta A., Fermani S., Tekalur S.A., Vanderberg A., Falini G. Calcium phosphate scaffold from biogenic calcium carbonate by fast ambient condition reactions // J. Cryst. Growth., 2011, vol. 336, № 1. P. 50–55.
97. Economou-Eliopoulos M. Apatite and Mn, Zn, Co-enriched chromite in Ni-laterites of northern Greece and their genetic significance // J. Geochem. Explor., 2003, vol. 80, № 1. P. 41–54.
98. Elrick M., Reardon D., Labor W., Martin J., Desrochers A., Pope M. Orbital-scale climate change and glacioeustasy during the earlyate Ordovician (pre-Hirnantian) determined from σ18O values in marine apatite // Geology, 2013, vol. 41, № 7. P. 775–778.
99. Emerson N.R., Simo J.A. (Toni), Byers C.W., Fournelle J. Correlation of (Ordovician, Mohawkian) K-bentonites in the upper Mississippi valley using apatite chemistry: implications for stratigraphic interpretation of the mixed carbonate-siliciclastic Decorah Formation // Palaeogeogr., Palaeoclim., Palaeoecol., 2004, vol. 210. P. 215–233.
100. Enkelmann E., Ehlers T.A., Buck G., Schatz A.-K. Advantages and challenges of automated apatite fission track counting // Chem. Geol., 2012, vol. 322-323. P. 278–289.
101. Fang W., Zhang H., Yin J., Yang B., Zhang Y., Li J., Yao F. Hydroxyapatite crystal formation in the presence o polysaccharide // Cryst. Growth and Des., 2016, vol. 16, № 3. P. 1247–1255.
102. Finger F., Krenn E., Schulz B., Harlov D., Schiller D. "Satellite monazites" in polymetamorphic basement rocks of the Alps: Their origin and petrological significance // Amer. Mineral., 2016, vol. 101, № 5-6. P. 1094–1103.
103. Galliski M.Á., Černý P., Márquez-Zavala M.F., Chapman R. An association of secondary Al—Li—Be—Ca—Sr phosphates in the San Elas pegmatite, San Luis, Argentina // Can. Miner., 2012, vol. 50, № 4. P. 9339–9342.
104. Garcia A.K. Development of an apatite oxygen paleobarometer: Experimental characterization of Sm3+-substituted apatite fluorescence as a function of oxygen availability // Precambrian. Res., 2020, vol. 349. 105389.
105. Georgieva S., Velinova N. Florencite-(Ce, La, Nd) and crandallite from the advanced argillic alteration in the Chelopech high-sulphidation epithermal Cu-Au deposit, Bulgaria // Dokl. B'lg. AN, 2014, vol. 67, № 12. P. 1669–1678.
106. Héran M.-A., Lécuyer C., Legendre S. Cenozoic long-term terrestrial climatic evolution in Germany tracked by δ18O of rodent tooth phosphate // Palaeogeogr., Palaeoclim., Palaeoecol., 2010, vol. 285, № 3-4. P. 331–342.
107. Horie K., Hidaka H., Gauthier-Lafaye F. Elemental distribution in apatite, titanite and zircon during hydrothermal alteration: Durability of immobilization mineral // Phys. Chem. Earth, 2008, vol. 33. P. 962–968.
108. Joachimski M.M., von Bitter P.H., Buggisch W. Constraints on Pennsylvanian glacioeustatis sea-level changes using oxygen isotopes of conodont apatite // Geology, 2006, vol. 34, № 4. R. 277–280.
109. Kocsis L., Dulai A., Bitner M.A., Vennemann T. Cooper Matthew Geochemical compositions of Neogene phosphatic brachiopods: Implications for ancient environmental and marine conditions // Palaeogeogr., Palaeoclim., Palaeoecol., 2012, vol. 326-328. P. 66–77.
110. Krneta S., Ciobanu C.L., Cook N.J., Ehrig K., Kontonikas-Charos A. A petrogenetic tool // Lithos: An International Journal of Mineralogy, Petrology and Geochemistry, 2016, vol. 262. P. 470–485. [Electronic resource].
111. Lieberovich R.F., Mitchell R.H. Apatite-group minerals from nepheline syenite, Pilansberg alkaline complex, South Africa // Mineral. Mag., 2006, vol. 70, № 5. P. 463–484.
112. Liu Wen-hao, Zhang J., Li Wan-ting, Sun T., Jiang Man-rong, Wang J., Wu Jian-yang, Chen Cao-jun // Diqiu kexue = Earth Sci. : Zhongguo dizhi daxue xuebao Zhongguo dizhi daxue xuebao, 2012, vol. 37, № 5. P. 966–980.
113. Llorens T., Moro M.C. Fe-Mn phosphate associations as indicators of the magmatic-hydrothermal and supergene evolution of the Jálama batholith in the Navasfras Sn-W District, Salamanca, Spain // Mineral. Mag., 2012, vol. 76, № 1. P. 1–24.
114. Lu J., Chen W., Ying Y., Jiang S., Zhao K. Apatite texture and trace element chemistry of carbonatite-related REE deposits in China: Implications for petrogenesis // Lithos, 2020, vol. 398. 106276.
115. Matton O., Cloutier R., Stevenson R. Apatite for destruction: Isotopic and geochemical analyses of bioapatites and sediments from the Upper Devonian Escuminac Formation (Miguasha, Québec) // Palaeogeogr., Palaeoclim.., Palaeoecol., 2012, vol. 361-362. P. 73–83.
116. Onac B.P., Effenberger H.S., Breban R.C. High-temperature and “exotic” minerals from the Cioclovina Save, Romania: A review // Stud. Univer. Babes-Bolyai. Geol., 2007, vol. 52, № 2. P. 3–10.
117. Otero O., Lécuyer C., Fourel F., Martineau F., Mackaye H.T., Vignaud P., Brunet M.l. Freshwater fish δ18O indicates a Messinian change of the precipitation regime in Central Africa // Geology, 2011, vol. 39, № 5. P. 435–438.
118. Palma G., Barra F., Reich M., Valencia V., Simon A.C., Vervoort J., Leisen M., Romero R. Halogens, trace element concentrations, and Sr-Nd isotopes in apatite from iron oxide-apatite (IOA) deposits in the Chilean iron belt: Evidence for magmatic and hydrothermal stages of mineralization // Geochim. Cosmochim. Acta, 2019, vol. 246. P. 515–540. [Electronic resource].
119. Parat F., Holtz F. Sulfur partitioning between apatite and melt and effect of sulfur on apatite solubility at oxidizing conditions // Contrib. Mineral. Petrology, 2004, vol. 147. P. 201–212.
120. Pieczka A. Beusite and an unusual Mn-rich apatite from the Szklary granitic pegmatite, Lower Silesia, southwestern Poland // Can. Miner., 2007, vol. 45, N 4. P. 901–914.
121. Piper D.Z. Rare earth elements in the sedimentary cycle: a summary // Chem. Geol. 1974, vol. 14, № 4. P. 285–304.
122. Roda-R. E. Galliski M.A., Roquet M.B., Hatert F., de Parseval P. Phosphate nodules containing two distinct assemblages in the Cema granitic pegmatite, San Luis province, Argentina: paragenesis, composition and significance // Can. Miner., 2012, vol. 50, № 4. P. 913–931.
123. Rossi M., Ghiara M.R., Chita G., Capitelli F. Crystal-chemical and structural characterization of fluorapatites in ejecta from Somma-Vesuvius volcanic complex // Amer. Mineral., 2011, vol. 96, № 11-12. P. 1828–1837.
124. Schilling K., Brown S.T., Lammers L.N. Mineralogical, nanostructural, and Ca isotopic evidence for non-classical calcium phosphate mineralization at circum-neutral pH // Geochim. Cosmochim. Acta, 2018, vol. 241. P. 255-271. [Electronic resource].
125. Sethmann I., Grohe B., Kleebe H.-J. Replacement of hydroxylapatite by whewellite: implications for kidney-stone formation // Mineral. Mag., 2014, vol. 78, № 1. P. 91–100.
126. Soltys A., Giuliani A., Phillips D. Apatite compositions and groundmass mineralogy record divergent melt/fluid evolution trajectories incoherent kimberlites caused by difering emplacement mechanisms // Contrib. Mineral. Petrology, 2020, vol. 175.
127. Song H., Wignal P.B., Tong J., Bond D.P.G., Song H., Lai X., Zhang K., Wang H., Chen Y. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian–Triassic transition and the link with end-Permian extinction and recovery // Earth Planet. Sci. Letter, 2012, vol. 353-354. P. 12–21.
128. Soudry D., Glenn C.R., Nathan Y., Segal I., VonderHaar D. Evolution of Tethyan phosphogenesis along the northern edges of the Arabian–African shield during the Cretaceous–Eocene as deduced from temporal variations of Ca and Nd isotopes and rates of P accumulation // Earth-Science Reviews, 2006, vol. 78, N 1–2. P. 27–57.
129. Streule M.J., Carter A., Searle M.P., Cottle J.M. Constraints on brittle field exhumation of the Everest-Makalu section of the Greater Himalayan Sequence: implications for models of crustal flow // Tectonics, 2012, vol. 31, № 3. TC3010.
130. O'Sullivan G., Chew D., Kenny G., Henrichs I., Mulligan D. The trace element composition of apatite and its application to detrital provenance studies // Earth-Science Reviews, 2020, vol. 201. 103044.
131. Tang Y.T., Han C.M., Bao Z.K., Huang Y.Y., Hea W., Hua W. Analysis of apatite crystals and their fluid inclusions by synchrotron radiation X-ray flourescence microprobe // Spectrochim. Acta, 2005. Part B 60. P. 439–446.
132. Torab F.M., Lehmann B. Magnetite-apatite deposits of the Bafq district, Central Iran: apatite geochemistry and monazite geochronology // Mineral. Mag., 2007, vol. 71, № 3. S. 347–363.
133. Tseng Y.-H., Mou Ch.-Y., Chan J.C.C. Solid-state NMR study of the transformation of octocalciumphosphate to hydroxyapatite: A mechanistic model for Central Dark Line Formation // J. Amer. Chem. Soc., 2006, vol. 128. P. 6909–6918.
134. Veselovskiy R.V., Thomson S.N., Arzamastsev A.A., Zakharov V.S. Apatite fission track thermochronology of Khibina Massif (Kola Peninsula, Russia): Implications for post-Devonian Tectonics of the NE Fennoscandia // Tectonophysics: International Journal of Geotectonics and the Geology and Physics of the Interior of the Earth, 2015, vol. 665. P. 157–163.
135. Ying Y.C., Chen W., Simonetti A., Jiang S.Y., Zhao K.D. Significance of hydrothermal reworking for REE mineralization associated with carbonatite: Constraints from in situ trace element and C-Sr isotope study of calcite and apatite from the Miaoya carbonatite complex (China) // Geochim. Cosmochim. Acta, 2020, vol. 280, P. 340–359.
136. Yu Jinjie, Zhang Qi, Mao Jingwen, Yan Shenghao Geochemistry of apatite from the apatite-rich iron deposits in the Ningwu Region, East Central China // Acta Geol. Sinica, 2007, vol. 81, № 4. P. 637–648. [Electronic resource].
137. Yu Jin-Jie, Chen Bao-Yun, Che Lin-Rui, Wang Tie-Zhu, Liu Shuai-Jie Genesis of the Meishan iron oxide-apatite deposit in the Ningwu Basin, eastern China: constraints from apatite chemistry // Geol. J., 2020, vol. 55, № 2. P. 1450–1467.
138. Zafar T., Rehman H.U., Mahar M.A., Alam M., Oyebamiji A., Rehman S.U., Leng Cheng-Biao A critical review on petrogenetic, metallogenic and geodynamic implications of granitic rocks exposed in north and east China: New insights from apatite geochemistry // J. Geodynamics, 2020, vol. 136. 101723.
139. Zhang R.W., Xue C.D., Xue L.P., Liu X. // Yanshi xuebao = Acta Petrol. Sin., 2019, vol. 35, № 5. P. 1407–1422.